RDP 2018-01: A Density-based Estimator of Core/Periphery Network Structures: Analysing the Australian Interbank Market
Equation
∂
e
DB
∂
x
=
2
(
d
O
−
d
P
)
[
y
2
(
c
T
−
x
+
y
)
3
+
(
1
−
c
T
−
y
)
2
(
1
−
c
T
−
y
+
x
)
3
]
+
2
(
d
C
−
d
O
)
[
(
c
T
−
x
)
y
(
c
T
−
x
+
y
)
3
+
(
1
−
c
T
−
y
)
x
(
1
−
c
T
−
y
+
x
)
3
]
∂
e
DB
∂
y
=
2
(
d
O
−
d
P
)
[
(
c
T
−
x
)
y
(
c
T
−
x
+
y
)
3
+
(
1
−
c
T
−
y
)
x
(
1
−
c
T
−
y
+
x
)
3
]
+
2
(
d
C
−
d
O
)
[
(
c
T
−
x
)
2
(
c
T
−
x
+
y
)
3
+
x
2
(
1
−
c
T
−
y
+
x
)
3
]
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaaqaaiabgkGi2kaadwgadaWgaaWcbaGaaeiraiaabkeaaeqaaaGcbaGaeyOaIyRaamiEaaaacqGH9aqpcaaIYaWaaeWaaeaacaWGKbWaaSbaaSqaaiaad+eaaeqaaOGaeyOeI0IaamizamaaBaaaleaacaWGqbaabeaaaOGaayjkaiaawMcaamaadmaabaWaaSaaaeaacaWG5bWaaWbaaSqabeaacaaIYaaaaaGcbaWaaeWaaeaacaWGJbWaaSbaaSqaaiaadsfaaeqaaOGaeyOeI0IaamiEaiabgUcaRiaadMhaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaOGaey4kaSYaaSaaaeaadaqadaqaaiaaigdacqGHsislcaWGJbWaaSbaaSqaaiaadsfaaeqaaOGaeyOeI0IaamyEaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaamaabmaabaGaaGymaiabgkHiTiaadogadaWgaaWcbaGaamivaaqabaGccqGHsislcaWG5bGaey4kaSIaamiEaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaaakiaawUfacaGLDbaacqGHRaWkcaaIYaWaaeWaaeaacaWGKbWaaSbaaSqaaiaadoeaaeqaaOGaeyOeI0IaamizamaaBaaaleaacaWGpbaabeaaaOGaayjkaiaawMcaamaadmaabaWaaSaaaeaadaqadaqaaiaadogadaWgaaWcbaGaamivaaqabaGccqGHsislcaWG4baacaGLOaGaayzkaaGaamyEaaqaamaabmaabaGaam4yamaaBaaaleaacaWGubaabeaakiabgkHiTiaadIhacqGHRaWkcaWG5baacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaaaakiabgUcaRmaalaaabaWaaeWaaeaacaaIXaGaeyOeI0Iaam4yamaaBaaaleaacaWGubaabeaakiabgkHiTiaadMhaaiaawIcacaGLPaaacaWG4baabaWaaeWaaeaacaaIXaGaeyOeI0Iaam4yamaaBaaaleaacaWGubaabeaakiabgkHiTiaadMhacqGHRaWkcaWG4baacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaaaaaOGaay5waiaaw2faaaqaamaalaaabaGaeyOaIyRaamyzamaaBaaaleaacaqGebGaaeOqaaqabaaakeaacqGHciITcaWG5baaaiabg2da9iaaikdadaqadaqaaiaadsgadaWgaaWcbaGaam4taaqabaGccqGHsislcaWGKbWaaSbaaSqaaiaadcfaaeqaaaGccaGLOaGaayzkaaWaamWaaeaadaWcaaqaamaabmaabaGaam4yamaaBaaaleaacaWGubaabeaakiabgkHiTiaadIhaaiaawIcacaGLPaaacaWG5baabaWaaeWaaeaacaWGJbWaaSbaaSqaaiaadsfaaeqaaOGaeyOeI0IaamiEaiabgUcaRiaadMhaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaOGaey4kaSYaaSaaaeaadaqadaqaaiaaigdacqGHsislcaWGJbWaaSbaaSqaaiaadsfaaeqaaOGaeyOeI0IaamyEaaGaayjkaiaawMcaaiaadIhaaeaadaqadaqaaiaaigdacqGHsislcaWGJbWaaSbaaSqaaiaadsfaaeqaaOGaeyOeI0IaamyEaiabgUcaRiaadIhaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaaGccaGLBbGaayzxaaGaey4kaSIaaGOmamaabmaabaGaamizamaaBaaaleaacaWGdbaabeaakiabgkHiTiaadsgadaWgaaWcbaGaam4taaqabaaakiaawIcacaGLPaaadaWadaqaamaalaaabaWaaeWaaeaacaWGJbWaaSbaaSqaaiaadsfaaeqaaOGaeyOeI0IaamiEaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaamaabmaabaGaam4yamaaBaaaleaacaWGubaabeaakiabgkHiTiaadIhacqGHRaWkcaWG5baacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaaaakiabgUcaRmaalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaaaOqaamaabmaabaGaaGymaiabgkHiTiaadogadaWgaaWcbaGaamivaaqabaGccqGHsislcaWG5bGaey4kaSIaamiEaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaaakiaawUfacaGLDbaaaaaa@E6B4@