RDP 2017-03: Financialisation and the Term Structure of Commodity Risk Premiums
Equation
R
e
t
u
r
n
c
,
m
,
t
=
−
ln
(
F
c
,
m
,
t
)
+
ln
(
S
c
,
t
+
m
)
=
(
ln
(
E
t
[
S
c
,
t
+
m
]
)
−
ln
(
F
c
,
m
,
t
)
)
+
(
ln
(
S
c
,
t
+
m
)
−
ln
(
E
t
[
S
c
,
t
+
m
]
)
)
=
R
i
s
k
p
r
e
m
i
u
m
c
,
m
,
t
+
(
ln
(
E
t
[
S
c
,
t
+
m
]
+
ε
c
,
m
,
t
)
−
ln
(
E
t
[
S
c
,
t
+
m
]
)
)
=
R
i
s
k
p
r
e
m
i
u
m
c
,
m
,
t
+
ln
(
E
t
[
S
c
,
t
+
m
]
+
ε
c
,
m
,
t
E
t
[
S
c
,
t
+
m
]
)
=
R
i
s
k
p
r
e
m
i
u
m
c
,
m
,
t
+
ln
(
1
+
ε
c
,
m
,
t
E
t
[
S
c
,
t
+
m
]
)
=
R
i
s
k
p
r
e
m
i
u
m
c
,
m
,
t
+
e
c
,
m
,
t
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGsbGaamyzaiaadshacaWG1bGaamOCaiaad6gadaWgaaWcbaGaam4yaiaacYcacaWGTbGaaiilaiaadshaaeqaaOGaeyypa0JaeyOeI0IaaeiBaiaab6gadaqadaqaaiaadAeadaWgaaWcbaGaam4yaiaacYcacaWGTbGaaiilaiaadshaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaaeiBaiaab6gadaqadaqaaiaadofadaWgaaWcbaGaam4yaiaacYcacaWG0bGaey4kaSIaamyBaaqabaaakiaawIcacaGLPaaaaeaacqGH9aqpdaqadaqaaiaabYgacaqGUbWaaeWaaeaacaWGfbWaaSbaaSqaaiaadshaaeqaaOWaamWaaeaacaWGtbWaaSbaaSqaaiaadogacaGGSaGaamiDaiabgUcaRiaad2gaaeqaaaGccaGLBbGaayzxaaaacaGLOaGaayzkaaGaeyOeI0IaaeiBaiaab6gadaqadaqaaiaadAeadaWgaaWcbaGaam4yaiaacYcacaWGTbGaaiilaiaadshaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaGaey4kaSYaaeWaaeaacaqGSbGaaeOBamaabmaabaGaam4uamaaBaaaleaacaWGJbGaaiilaiaadshacqGHRaWkcaWGTbaabeaaaOGaayjkaiaawMcaaiabgkHiTiaabYgacaqGUbWaaeWaaeaacaWGfbWaaSbaaSqaaiaadshaaeqaaOWaamWaaeaacaWGtbWaaSbaaSqaaiaadogacaGGSaGaamiDaiabgUcaRiaad2gaaeqaaaGccaGLBbGaayzxaaaacaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGaeyypa0JaamOuaiaadMgacaWGZbGaam4AaiaaykW7caWGWbGaamOCaiaadwgacaWGTbGaamyAaiaadwhacaWGTbWaaSbaaSqaaiaadogacaGGSaGaamyBaiaacYcacaWG0baabeaakiabgUcaRmaabmaabaGaaeiBaiaab6gadaqadaqaaiaadweadaWgaaWcbaGaamiDaaqabaGcdaWadaqaaiaadofadaWgaaWcbaGaam4yaiaacYcacaWG0bGaey4kaSIaamyBaaqabaaakiaawUfacaGLDbaacqGHRaWkcqaH1oqzdaWgaaWcbaGaam4yaiaacYcacaWGTbGaaiilaiaadshaaeqaaaGccaGLOaGaayzkaaGaeyOeI0IaaeiBaiaab6gadaqadaqaaiaadweadaWgaaWcbaGaamiDaaqabaGcdaWadaqaaiaadofadaWgaaWcbaGaam4yaiaacYcacaWG0bGaey4kaSIaamyBaaqabaaakiaawUfacaGLDbaaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaacqGH9aqpcaWGsbGaamyAaiaadohacaWGRbGaaGPaVlaadchacaWGYbGaamyzaiaad2gacaWGPbGaamyDaiaad2gadaWgaaWcbaGaam4yaiaacYcacaWGTbGaaiilaiaadshaaeqaaOGaey4kaSIaaeiBaiaab6gadaqadaqaamaalaaabaGaamyramaaBaaaleaacaWG0baabeaakmaadmaabaGaam4uamaaBaaaleaacaWGJbGaaiilaiaadshacqGHRaWkcaWGTbaabeaaaOGaay5waiaaw2faaiabgUcaRiabew7aLnaaBaaaleaacaWGJbGaaiilaiaad2gacaGGSaGaamiDaaqabaaakeaacaWGfbWaaSbaaSqaaiaadshaaeqaaOWaamWaaeaacaWGtbWaaSbaaSqaaiaadogacaGGSaGaamiDaiabgUcaRiaad2gaaeqaaaGccaGLBbGaayzxaaaaaaGaayjkaiaawMcaaaqaaiabg2da9iaadkfacaWGPbGaam4CaiaadUgacaaMc8UaamiCaiaadkhacaWGLbGaamyBaiaadMgacaWG1bGaamyBamaaBaaaleaacaWGJbGaaiilaiaad2gacaGGSaGaamiDaaqabaGccqGHRaWkcaqGSbGaaeOBamaabmaabaGaaGymaiabgUcaRmaalaaabaGaeqyTdu2aaSbaaSqaaiaadogacaGGSaGaamyBaiaacYcacaWG0baabeaaaOqaaiaadweadaWgaaWcbaGaamiDaaqabaGcdaWadaqaaiaadofadaWgaaWcbaGaam4yaiaacYcacaWG0bGaey4kaSIaamyBaaqabaaakiaawUfacaGLDbaaaaaacaGLOaGaayzkaaaabaGaeyypa0JaamOuaiaadMgacaWGZbGaam4AaiaaykW7caWGWbGaamOCaiaadwgacaWGTbGaamyAaiaadwhacaWGTbWaaSbaaSqaaiaadogacaGGSaGaamyBaiaacYcacaWG0baabeaakiabgUcaRiaadwgadaWgaaWcbaGaam4yaiaacYcacaWGTbGaaiilaiaadshaaeqaaaaaaa@28C5@