RDP 2016-07: The Efficiency of Central Clearing: A Segmented Markets Approach
Equation (B2)
p
m
,
t
β
𝔼
t
[
u
′
(
c
m
,
t
+
1
)
u
′
(
c
m
,
t
)
(
p
m
,
t
+
1
+
(
1
−
λ
m
)
f
m
,
t
+
1
+
λ
m
[
M
(
y
m
,
t
+
1
)
y
m
,
t
+
1
+
(
1
−
M
(
y
m
,
t
+
1
)
)
f
m
,
t
+
1
+
D
(
y
m
,
t
+
1
)
max
(
0
,
Z
−
[
f
m
,
t
+
1
−
y
m
,
t
+
1
]
)
+
(
1
−
D
(
y
m
,
t
+
1
)
)
Z
]
)
]
−
λ
m
Z
−
λ
m
1
2
𝔼
t
[
M
(
y
m
,
t
+
1
)
y
m
,
t
+
1
+
(
1
−
M
(
y
m
,
t
+
1
)
)
[
f
m
,
t
+
1
−
D
(
y
m
,
t
+
1
)
min
(
Z
,
f
m
,
t
+
1
−
y
m
,
t
+
1
)
]
]
∫
0
1
λ
n
λ
¯
u
′
(
c
n
,
t
)
+
u
′
(
c
˜
n
,
t
)
u
′
(
c
m
,
t
)
d
n
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGWbWaaSbaaSqaaiaad2gacaGGSaGaamiDaaqabaGccqaHYoGycaWGfbWaaSbaaSqaaiaadshaaeqaaOWaamWaaeaadaWcaaqaaiqadwhagaqbamaabmaabaGaam4yamaaBaaaleaacaWGTbGaaiilaiaadshacqGHRaWkcaaIXaaabeaaaOGaayjkaiaawMcaaaqaaiqadwhagaqbamaabmaabaGaam4yamaaBaaaleaacaWGTbGaaiilaiaadshaaeqaaaGccaGLOaGaayzkaaaaamaabmaabaqbaeaabiqaaaqaaiaadchadaWgaaWcbaGaamyBaiaacYcacaWG0bGaey4kaSIaaGymaaqabaGccqGHRaWkdaqadaqaaiaaigdacqGHsislcqaH7oaBdaWgaaWcbaGaamyBaaqabaaakiaawIcacaGLPaaacaWGMbWaaSbaaSqaaiaad2gacaGGSaGaamiDaiabgUcaRiaaigdaaeqaaOGaey4kaSIaeq4UdW2aaSbaaSqaaiaad2gaaeqaaOWaamqaaeaacaWGnbWaaeWaaeaacaWG5bWaaSbaaSqaaiaad2gacaGGSaGaamiDaiabgUcaRiaaigdaaeqaaaGccaGLOaGaayzkaaGaamyEamaaBaaaleaacaWGTbGaaiilaiaadshacqGHRaWkcaaIXaaabeaakiabgUcaRmaabmaabaGaaGymaiabgkHiTiaad2eadaqadaqaaiaadMhadaWgaaWcbaGaamyBaiaacYcacaWG0bGaey4kaSIaaGymaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacaWGMbWaaSbaaSqaaiaad2gacaGGSaGaamiDaiabgUcaRiaaigdaaeqaaaGccaGLBbaaaeaacqGHRaWkcaWGebWaaeWaaeaacaWG5bWaaSbaaSqaaiaad2gacaGGSaGaamiDaiabgUcaRiaaigdaaeqaaaGccaGLOaGaayzkaaGaaeyBaiaabggacaqG4bWaaeWaaeaacaaIWaGaaiilaiaadQfacqGHsisldaWadaqaaiaadAgadaWgaaWcbaGaamyBaiaacYcacaWG0bGaey4kaSIaaGymaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaad2gacaGGSaGaamiDaiabgUcaRiaaigdaaeqaaaGccaGLBbGaayzxaaaacaGLOaGaayzkaaGaey4kaSYaaeWaaeaacaaIXaGaeyOeI0IaamiramaabmaabaGaamyEamaaBaaaleaacaWGTbGaaiilaiaadshacqGHRaWkcaaIXaaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaamaadiaabaGaamOwaaGaayzxaaaaaaGaayjkaiaawMcaaaGaay5waiaaw2faaaqaaiabgkHiTiabeU7aSnaaBaaaleaacaWGTbaabeaakiaadQfacqGHsislcqaH7oaBdaWgaaWcbaGaamyBaaqabaGcdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadweadaWgaaWcbaGaamiDaaqabaGcdaWadaqaauaabaqaceaaaeaacaWGnbWaaeWaaeaacaWG5bWaaSbaaSqaaiaad2gacaGGSaGaamiDaiabgUcaRiaaigdaaeqaaaGccaGLOaGaayzkaaGaamyEamaaBaaaleaacaWGTbGaaiilaiaadshacqGHRaWkcaaIXaaabeaakiabgUcaRmaabmaabaGaaGymaiabgkHiTiaad2eadaqadaqaaiaadMhadaWgaaWcbaGaamyBaiaacYcacaWG0bGaey4kaSIaaGymaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaadaWadaqaaiaadAgadaWgaaWcbaGaamyBaiaacYcacaWG0bGaey4kaSIaaGymaaqabaGccqGHsislcaWGebWaaeWaaeaacaWG5bWaaSbaaSqaaiaad2gacaGGSaGaamiDaiabgUcaRiaaigdaaeqaaaGccaGLOaGaayzkaaGaaeyBaiaabMgacaqGUbWaaeWaaeaacaWGAbGaaiilaiaadAgadaWgaaWcbaGaamyBaiaacYcacaWG0bGaey4kaSIaaGymaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaad2gacaGGSaGaamiDaiabgUcaRiaaigdaaeqaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaaaaaGaay5waiaaw2faamaapedabaWaaSaaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaaakeaacuaH7oaBgaqeaaaadaWcaaqaaiqadwhagaqbamaabmaabaGaam4yamaaBaaaleaacaWGUbGaaiilaiaadshaaeqaaaGccaGLOaGaayzkaaGaey4kaSIabmyDayaafaWaaeWaaeaaceWGJbGbaGaadaWgaaWcbaGaamOBaiaacYcacaWG0baabeaaaOGaayjkaiaawMcaaaqaaiqadwhagaqbamaabmaabaGaam4yamaaBaaaleaacaWGTbGaaiilaiaadshaaeqaaaGccaGLOaGaayzkaaaaaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiaadsgacaWGUbaaaaa@160A@