RDP 2013-08: International Business Cycles with Complete Markets
Equation (B11)
m
j
(
s
t
)
β
t
π
(
s
t
)
=
∑
s
t
+
1
∈
S
m
j
(
s
t
,
s
t
+
1
)
β
t
+
1
π
(
s
t
,
s
t
+
1
)
β
t
+
1
π
(
s
t
,
s
t
+
1
)
β
t
π
(
s
t
)
×
(
1
−
δ
+
ϕ
(
i
j
(
s
t
,
s
t
+
1
)
k
j
(
s
t
)
)
−
ϕ
′
(
i
j
(
s
t
,
s
t
+
1
)
k
j
(
s
t
)
)
i
j
(
s
t
,
s
t
+
1
)
k
j
(
s
t
)
)
+
∑
s
t
+
1
∈
S
γ
(
s
t
,
s
t
+
1
)
β
t
+
1
π
(
s
t
,
s
t
+
1
)
β
t
+
1
π
(
s
t
,
s
t
+
1
)
β
t
π
(
s
t
)
×
z
j
(
s
t
,
s
t
+
1
)
f
1
(
k
j
(
s
t
)
,
n
j
(
s
t
,
s
t
+
1
)
)
.
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiabbeaamAraam aalaaabaGaamyBamaaBaaaleaacaWGQbaabeaakmaabmaabaGaam4C amaaCaaaleqabaGaamiDaaaaaOGaayjkaiaawMcaaaqaaiabek7aIn aaCaaaleqabaGaamiDaaaakiabec8aWnaabmaabaGaam4CamaaCaaa leqabaGaamiDaaaaaOGaayjkaiaawMcaaaaacqGH9aqpdaaeqbqaam aalaaabaGaamyBamaaBaaaleaacaWGQbaabeaakmaabmaabaGaam4C amaaCaaaleqabaGaamiDaaaakiaacYcacaGGZbWaaSbaaSqaaiaads hacqGHRaWkcaaIXaaabeaaaOGaayjkaiaawMcaaaqaaiabek7aInaa CaaaleqabaGaamiDaiabgUcaRiaaigdaaaGccqaHapaCdaqadaqaai aadohadaahaaWcbeqaaiaadshaaaGccaGGSaGaai4CamaaBaaaleaa caWG0bGaey4kaSIaaGymaaqabaaakiaawIcacaGLPaaaaaaaleaaca WGZbWaaSbaaWqaaiaadshacqGHRaWkcaaIXaaabeaaiiaaliab=HGi olaadofaaeqaniabggHiLdGcdaWcaaqaaiabek7aInaaCaaaleqaba GaamiDaiabgUcaRiaaigdaaaGccqaHapaCdaqadaqaaiaadohadaah aaWcbeqaaiaadshaaaGccaGGSaGaai4CamaaBaaaleaacaWG0bGaey 4kaSIaaGymaaqabaaakiaawIcacaGLPaaaaeaacqaHYoGydaahaaWc beqaaiaadshaaaGccqaHapaCdaqadaqaaiaadohadaahaaWcbeqaai aadshaaaaakiaawIcacaGLPaaaaaaabaGaey41aq7aaeWaaeaacaaI XaGaeyOeI0IaeqiTdqMaey4kaSIaeqy1dy2aaeWaaeaadaWcaaqaai aadMgadaWgaaWcbaGaamOAaaqabaGcdaqadaqaaiaadohadaahaaWc beqaaiaadshaaaGccaGGSaGaai4CamaaBaaaleaacaWG0bGaey4kaS IaaGymaaqabaaakiaawIcacaGLPaaaaeaacaWGRbWaaSbaaSqaaiaa dQgaaeqaaOWaaeWaaeaacaWGZbWaaWbaaSqabeaacaWG0baaaaGcca GLOaGaayzkaaaaaaGaayjkaiaawMcaaiabgkHiTiqbew9aMzaafaWa aeWaaeaadaWcaaqaaiaadMgadaWgaaWcbaGaamOAaaqabaGcdaqada qaaiaadohadaahaaWcbeqaaiaadshaaaGccaGGSaGaai4CamaaBaaa leaacaWG0bGaey4kaSIaaGymaaqabaaakiaawIcacaGLPaaaaeaaca WGRbWaaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaacaWGZbWaaWbaaSqa beaacaWG0baaaaGccaGLOaGaayzkaaaaaaGaayjkaiaawMcaamaala aabaGaamyAamaaBaaaleaacaWGQbaabeaakmaabmaabaGaam4Camaa CaaaleqabaGaamiDaaaakiaacYcacaGGZbWaaSbaaSqaaiaadshacq GHRaWkcaaIXaaabeaaaOGaayjkaiaawMcaaaqaaiaadUgadaWgaaWc baGaamOAaaqabaGcdaqadaqaaiaadohadaahaaWcbeqaaiaadshaaa aakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaaabaGaey4kaSYaaabu aeaadaWcaaqaaiabeo7aNnaabmaabaGaam4CamaaCaaaleqabaGaam iDaaaakiaacYcacaGGZbWaaSbaaSqaaiaadshacqGHRaWkcaaIXaaa beaaaOGaayjkaiaawMcaaaqaaiabek7aInaaCaaaleqabaGaamiDai abgUcaRiaaigdaaaGccqaHapaCdaqadaqaaiaadohadaahaaWcbeqa aiaadshaaaGccaGGSaGaai4CamaaBaaaleaacaWG0bGaey4kaSIaaG ymaaqabaaakiaawIcacaGLPaaaaaaaleaacaWGZbWaaSbaaWqaaiaa dshacqGHRaWkcaaIXaaabeaaliab=HGiolaadofaaeqaniabggHiLd GcdaWcaaqaaiabek7aInaaCaaaleqabaGaamiDaiabgUcaRiaaigda aaGccqaHapaCdaqadaqaaiaadohadaahaaWcbeqaaiaadshaaaGcca GGSaGaam4CamaaBaaaleaacaWG0bGaey4kaSIaaGymaaqabaaakiaa wIcacaGLPaaaaeaacqaHYoGydaahaaWcbeqaaiaadshaaaGccqaHap aCdaqadaqaaiaadohadaahaaWcbeqaaiaadshaaaaakiaawIcacaGL PaaaaaaabaGaey41aqRaamOEamaaBaaaleaacaWGQbaabeaakmaabm aabaGaam4CamaaCaaaleqabaGaamiDaaaakiaacYcacaGGZbWaaSba aSqaaiaadshacqGHRaWkcaaIXaaabeaaaOGaayjkaiaawMcaaiaadA gadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaadUgadaWgaaWcbaGa amOAaaqabaGcdaqadaqaaiaadohadaahaaWcbeqaaiaadshaaaaaki aawIcacaGLPaaacaGGSaGaamOBamaaBaaaleaacaWGQbaabeaakmaa bmaabaGaam4CamaaCaaaleqabaGaamiDaaaakiaacYcacaGGZbWaaS baaSqaaiaadshacqGHRaWkcaaIXaaabeaaaOGaayjkaiaawMcaaaGa ayjkaiaawMcaaiaac6caaaaa@15FA@