RDP 2012-08: Estimation and Solution of Models with Expectations and Structural Changes
Equation (10)
(
I
−
B
t
Q
t
+
1
)
−
1
(
Γ
t
+
B
t
C
t
+
1
)
=
C
t
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadMeacqGHsislcaWGcbWaaSbaaSqaaiaadshaaeqaaOGaamyuamaaBaaaleaacaWG0bGaey4kaSIaaGymaaqabaGccaGGPaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiikaiabfo5ahnaaBaaaleaacaWG0baabeaakiabgUcaRiaadkeadaWgaaWcbaGaamiDaaqabaGccaWGdbWaaSbaaSqaaiaadshacqGHRaWkcaaIXaaabeaakiaacMcacqGH9aqpcaqGGaGaam4qamaaBaaaleaacaWG0baabeaaaaa@4E71@
Equation (11)
(
I
−
B
t
Q
t
+
1
)
−
1
A
t
=
Q
t
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadMeacqGHsislcaWGcbWaaSbaaSqaaiaadshaaeqaaOGaamyuamaaBaaaleaacaWG0baabeaakmaaBaaaleaacqGHRaWkcaaIXaaabeaakiaacMcadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGbbWaaSbaaSqaaiaadshaaeqaaOGaeyypa0JaaeiiaiaadgfadaWgaaWcbaGaamiDaaqabaaaaa@464E@
Equation (12)
(
I
−
B
t
Q
t
+
1
)
−
1
D
t
=
G
t
,
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadMeacqGHsislcaWGcbWaaSbaaSqaaiaadshaaeqaaOGaamyuamaaBaaaleaacaWG0bGaey4kaSIaaGymaaqabaGccaGGPaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaamiramaaBaaaleaacaWG0baabeaakiabg2da9iaadEeadaWgaaWcbaGaamiDaaqabaGccaGGSaaaaa@4628@