RDP 9511: Superannuation and Saving
Equation (10)
Δ
⌈
S
n
⌉
⌊
y
⌋
t
=
ϕ
+
Σ
b
=
0
k
β
b
Δ
⌈
S
s
⌉
⌊
y
⌋
t
−
b
+
Σ
c
=
1
k
β
c
Δ
⌈
S
n
⌉
⌊
y
⌋
t
−
c
+
Σ
d
=
0
k
β
d
Δ
⌈
y
^
L
⌉
⌊
y
⌋
t
−
d
+
Σ
e
=
0
k
β
e
Δ
⌈
A
⌉
⌊
y
⌋
t
−
e
+
Σ
f
=
1
k
β
f
r
t
−
f
+
Σ
g
=
1
k
β
g
Δ
D
t
−
g
+
Σ
h
=
1
k
β
h
Δ
Y
˜
t
−
h
+
Σ
i
=
1
k
β
i
Δ
Π
t
−
i
+
Σ
j
=
1
k
β
j
Δ
U
t
−
j
}
s
h
o
r
t
r
u
n
+
α
1
⌈
A
⌉
⌊
y
⌋
t
−
1
+
α
2
⌈
y
^
L
⌉
⌊
y
⌋
t
−
1
+
α
4
D
t
−
1
+
α
6
Π
t
−
1
+
α
7
U
t
−
1
+
(
α
8
−
1
)
⌈
S
s
⌉
⌊
y
⌋
t
−
1
+
γ
⌈
S
n
⌉
⌊
y
⌋
t
−
1
+
ε
t
}
L
o
n
g
r
u
n
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaGaca abaeqabaGaeuiLdq0aaSaaaeaadaWbdaqaaiaadofadaahaaWcbeqa aiaad6gaaaaakiaaw6o+caGL5JpaaeaadaGbdaqaaiaadMhaaiaawc p+caGL7JpaaaWaaSbaaSqaaiaadshaaeqaaOGaeyypa0Jaeqy1dyMa ey4kaSYaaabCaeaacqaHYoGydaWgaaWcbaGaamOyaaqabaGccqqHuo araSqaaiaadkgacqGH9aqpcaaIWaaabaGaam4AaaqdcqGHris5aOWa aSaaaeaadaWbdaqaaiaadofadaahaaWcbeqaaiaadohaaaaakiaaw6 o+caGL5JpaaeaadaGbdaqaaiaadMhaaiaawcp+caGL7JpaaaWaaSba aSqaaiaadshacqGHsislcaWGIbaabeaakiabgUcaRmaaqahabaGaeq OSdi2aaSbaaSqaaiaadogaaeqaaOGaeuiLdqealeaacaWGJbGaeyyp a0JaaGymaaqaaiaadUgaa0GaeyyeIuoakmaalaaabaWaaCWaaeaaca WGtbWaaWbaaSqabeaacaWGUbaaaaGccaGLUJVaayz+4daabaWaayWa aeaacaWG5baacaGLWJVaay5+4daaamaaBaaaleaacaWG0bGaeyOeI0 Iaam4yaaqabaGccqGHRaWkdaaeWbqaaiabek7aInaaBaaaleaacaWG Kbaabeaakiabfs5aebWcbaGaamizaiabg2da9iaaicdaaeaacaWGRb aaniabggHiLdGcdaWcaaqaamaahmaabaGabmyEayaajaWaaSbaaSqa aiaadYeaaeqaaaGccaGLUJVaayz+4daabaWaayWaaeaacaWG5baaca GLWJVaay5+4daaamaaBaaaleaacaWG0bGaeyOeI0IaamizaaqabaGc cqGHRaWkdaaeWbqaaiabek7aInaaBaaaleaacaWGLbaabeaakiabfs 5aebWcbaGaamyzaiabg2da9iaaicdaaeaacaWGRbaaniabggHiLdGc daWcaaqaamaahmaabaGaamyqaaGaayP74laawMp+aaqaamaagmaaba GaamyEaaGaayj84laawUp+aaaadaWgaaWcbaGaamiDaiabgkHiTiaa dwgaaeqaaaGcbaGaey4kaSYaaabCaeaacqaHYoGydaWgaaWcbaGaam OzaaqabaGccaWGYbWaaSbaaSqaaiaadshacqGHsislcaWGMbaabeaa kiabgUcaRmaaqahabaGaeqOSdi2aaSbaaSqaaiaadEgaaeqaaOGaeu iLdqKaamiramaaBaaaleaacaWG0bGaeyOeI0Iaam4zaaqabaaabaGa am4zaiabg2da9iaaigdaaeaacaWGRbaaniabggHiLdaaleaacaWGMb Gaeyypa0JaaGymaaqaaiaadUgaa0GaeyyeIuoakiabgUcaRmaaqaha baGaeqOSdi2aaSbaaSqaaiaadIgaaeqaaOGaeuiLdqKabmywayaaia WaaSbaaSqaaiaadshacqGHsislcaWGObaabeaakiabgUcaRmaaqaha baGaeqOSdi2aaSbaaSqaaiaadMgaaeqaaOGaeuiLdqKaeuiOda1aaS baaSqaaiaadshacqGHsislcaWGPbaabeaaaeaacaWGPbGaeyypa0Ja aGymaaqaaiaadUgaa0GaeyyeIuoaaSqaaiaadIgacqGH9aqpcaaIXa aabaGaam4AaaqdcqGHris5aOGaey4kaSYaaabCaeaacqaHYoGydaWg aaWcbaGaamOAaaqabaGccqqHuoaraSqaaiaadQgacqGH9aqpcaaIXa aabaGaam4AaaqdcqGHris5aOGaamyvamaaBaaaleaacaWG0bGaeyOe I0IaamOAaaqabaaaaOGaayzFaaGaam4CaiaadIgacaWGVbGaamOCai aadshacaaMc8UaamOCaiaadwhacaWGUbaabaWaaiGaaqaabeqaaiab gUcaRiabeg7aHnaaBaaaleaacaaIXaaabeaakmaalaaabaWaaCWaae aacaWGbbaacaGLUJVaayz+4daabaWaayWaaeaacaWG5baacaGLWJVa ay5+4daaamaaBaaaleaacaWG0bGaeyOeI0IaaGymaaqabaGccqGHRa WkcqaHXoqydaWgaaWcbaGaaGOmaaqabaGcdaWcaaqaamaahmaabaGa bmyEayaajaWaaSbaaSqaaiaadYeaaeqaaaGccaGLUJVaayz+4daaba WaayWaaeaacaWG5baacaGLWJVaay5+4daaamaaBaaaleaacaWG0bGa eyOeI0IaaGymaaqabaGccqGHRaWkcqaHXoqydaWgaaWcbaGaaGinaa qabaGccaWGebWaaSbaaSqaaiaadshacqGHsislcaaIXaaabeaakiab gUcaRiabeg7aHnaaBaaaleaacaaI2aaabeaakiabfc6aqnaaBaaale aacaWG0bGaeyOeI0IaaGymaaqabaGccqGHRaWkcqaHXoqydaWgaaWc baGaaG4naaqabaGccaWGvbWaaSbaaSqaaiaadshacqGHsislcaaIXa aabeaaaOqaaiabgUcaRmaabmaabaGaeqySde2aaSbaaSqaaiaaiIda aeqaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaamaalaaabaWaaCWaae aacaWGtbWaaWbaaSqabeaacaWGZbaaaaGccaGLUJVaayz+4daabaWa ayWaaeaacaWG5baacaGLWJVaay5+4daaamaaBaaaleaacaWG0bGaey OeI0IaaGymaaqabaGccqGHRaWkcqaHZoWzdaWcaaqaamaahmaabaGa am4uamaaCaaaleqabaGaamOBaaaaaOGaayP74laawMp+aaqaamaagm aabaGaamyEaaGaayj84laawUp+aaaadaWgaaWcbaGaamiDaiabgkHi TiaaigdaaeqaaOGaey4kaSIaeqyTdu2aaSbaaSqaaiaadshaaeqaaa aakiaaw2haaiaadYeacaWGVbGaamOBaiaadEgacaaMc8UaamOCaiaa dwhacaWGUbaaaaa@7A25@